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Abstract

In recent advancements, pre-trained contrastive models like CLIP have demonstrated re-
markable multi-modal prowess in tackling diverse vision tasks. Yet, their potential in ad-
dressing the long-tailed vision recognition challenge has not been thoroughly investigated. In
this study, we observe that textual features coming from CLIP exhibit a more discriminative
and balanced distribution compared to their visual counterparts. Leveraging this insight, we
propose a novel approach that uses these balanced textual features as prototypes to guide
the learning of robust, disentangled representations from biased visual features. Our method
begins with the fine-tuning of CLIP through contrastive learning, enabling the encoders to
better adapt to the target dataset. Subsequently, we freeze the visual encoder and apply a
linear adapter to enhance the visual representations. To achieve robust vision recognition,
we integrate a linear classifier into our framework, which is initialized with the fine-tuned
textual features and the weights can be viewed as prototypes. We then introduce a princi-
pled approach to robust vision representation learning by minimizing the optimal transport
distance between the refined visual features and the prototypes, facilitating the disentangle-
ment of biased features and the iterative optimization of prototypes towards class centroids.
Additionally, we introduce a supervised contrastive learning loss based on the transport
plan for further enhanced robust vision representation learning. Extensive experiments on
long-tailed vision recognition benchmarks demonstrate the superiority of our method.

1 Introduction

The triumph of deep learning is largely dependent on high-quality large-scale datasets (Russakovsky et al.,
2015), which usually assume a nearly balanced data distribution. However, real-world datasets typically
exhibit a long-tailed distribution, where only a few head classes encompass most of the data and most tail
classes own very few samples (Zhou et al., 2017; Lin et al., 2014; Liu et al., 2015; Asuncion, 2007). This
phenomenon poses a significant challenge for deep learning models, resulting in poor performance on tail
classes (Zhou et al., 2020a; Liu et al., 2019; Yang et al., 2022). Consequently, addressing this issue is of
paramount practical importance.

Typically, methods designed to solve the long-tailed recognition can be roughly divided into five approaches:
data-level approach (Shen et al., 2016; Barandela et al., 2004; Han et al., 2005; Chawla et al., 2002), re-
weighting approach (Liu et al., 2022; Lin et al., 2017; Cui et al., 2019; Ren et al., 2018; Cao et al., 2019; Guo
et al., 2022a), meta-learning approach (Guo et al., 2022a; Li et al., 2021; Ren et al., 2020; Jamal et al., 2020),
decoupling approach (Kang et al., 2019; Zhong et al., 2021) and others (Menon et al., 2020; Wang et al.,
2021a; Li et al., 2022b; Wang et al., 2021b; Long et al., 2022; Dong et al., 2022). Despite their effectiveness,
these methods only utilize the image modality to solve the long-tailed classification problem. That is to say,
they ignore the semantic features of the raw label text. Considering the language modality might provide
beneficial information specially for the inadequate data sources, we can address the long-tailed problem based
on vision-language models, where the representation power of the vision-language model is the key. Recently,
contrastive vision-language model such as CLIP (Radford et al., 2021) has provided an effective way to learn
powerful visual-language representations. Motivated by this, some methods (Ma et al., 2021; Tian et al.,
2022) design to leverage the vision-language model CLIP for the long-tailed classification. For example,
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Figure 1: t-SNE (Van der Maaten & Hinton, 2008) visualization of textual features and visual features on fine-tuned
CLIP, and refined visual features by our methods. We visualize 10 classes with the least number of image samples
from Places-LT and each class has 80 text prompts by filling templates.

BALLAD (Ma et al., 2021) employs an auxiliary linear adapter and commonly-used re-sampling strategy
to fine-tune CLIP adapt to the imbalanced image dataset. VL-LTR (Tian et al., 2022) designs a class-wise
contrastive learning framework to fine-tune CLIP and a language-guided recognition head to classify the
input images, using additional text data collected from Wikipedia. Although these methods have achieved
the desired performance, they ignore the semantic complementarity between multi-modal data, specifically
for such an imbalanced distribution. Therefore, designing an effective framework for using vision-language
knowledge from CLIP under the circumstances of long-tailed distribution is still worth exploring.

To this end, we first explore how fine-tuned CLIP performs on the imbalanced image classification problem.
We fine-tune the vision-language backbone of CLIP through contrastive learning on a specific long-tailed
dataset. The textual and visual features extracted from the fine-tuned vision-language backbone are visu-
alized in Figure 1, where the language inputs are built by filling prompt templates with text labels and
the image inputs are from the highly imbalanced image dataset. We can observe that the textual features
from fine-tuned CLIP are relatively more discriminative than the visual features, specifically for minority
classes. Motivated by this observation, we aim to make full use of the advantage from textual features to
help discriminative visual features learning and improve the long-tailed classification task. Additionally, we
give more visualizations in App. A for further demonstration, where we find similar observations on majority
classes.

As shown in the Refined Visual Features part of Figure 1, focusing on the fine-tuned textual features that
are still nearly discriminative, we consider textual features as prototypes (denoted as the circle) for robust
representation learning of entangled biased visual features (denoted as the triangle). After disentangled
representation learning, visual features from the same class should be clustered together tightly around the
corresponding prototypes, which will also be pushed far from each other. As a result, we can obtain a clear
and discriminative representation class boundary for better recognition. Specifically, we achieve this goal
by pushing the distribution of visual features toward their prototypes. We first fine-tune CLIP backbones
on a target imbalanced dataset. Then we employ a linear adapter to refine the biased visual features.
Considering the representation mismatch between refined visual features and fine-tuned textual features, we
initialize a learnable linear classifier by text prompt embeddings for both keeping consistency and further
classifying images. Due to the specific initialization, we regard the weights of the classifier as prototypes
instead of using textual features directly. To measure the difference between distributions, we introduce a
principled approach where we minimize the optimal transport (OT) distance (Peyré et al., 2019) to refine
our biased visual features and continuously move prototypes toward class centers by updating models in
unsupervised manner. For better use of supervised information to help balance vision representation, we
design a supervised contrastive learning loss based on the optimal transport plan to achieve this goal. By
introducing such a constraint, our method further effectively helps to entangle the coupled visual features. As
a result, classes can obtain more discriminative feature distributions than before, thereby achieving better
classification performance. Moreover, our framework can also be quickly combined with image-modality-
based methods of addressing imbalanced vision recognition to achieve more performance improvements.
We conduct extensive experiments on long-tailed vision recognition benchmarks and achieve significant
improved performance, which shows the superiority of our method in using vision-language information to
help imbalanced visual recognition. Besides, our method can easily expand to few-shot learning without
significant modifications, demonstrating the well flexibility of our method.
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2 Related work

Long-Tailed Classification. Researchers have proposed numerous methods for long-tailed classifica-
tion tasks. One promising direction aims to adjust the original imbalanced data distribution through re-
sampling ((Drummond & Holte, 2003; He & Garcia, 2009; Barandela et al., 2004; Van Hulse et al., 2007))
or data augmentation (Chu et al., 2020; Li et al., 2021; Park et al., 2022; Chou et al., 2020; Gao et al.,
2023a; 2024). Besides, various re-weighting methods have been introduced by assigning greater weights to
tail samples during optimization automatically or manually, which can be categorized into class-level man-
ner (Lin et al., 2017; Cao et al., 2019; Cui et al., 2019; Li et al., 2025) and instance-level manner (Dong
et al., 2017; Cui et al., 2019; Menon et al., 2020; Liu et al., 2022; Guo et al., 2022b). Some studies (Kang
et al., 2019) have found that decoupling the feature extractor from the classifier can enhance the perfor-
mance in long-tailed recognition tasks. Therefore, the followings (Zhong et al., 2021; Zhou et al., 2020b)
explore more discriminative feature learning and balanced classifier optimization. Recently, several works
focus on enhancing long-tailed vision recognition by using contrastive learning (Cui et al., 2021; Wang et al.,
2021a; Suh et al.; Kang et al., 2021; Li et al.). PaCo designs a parametric contrastive learning loss to tackle
long-tailed recognition (Cui et al., 2021).

Vision-Language Model. Recently, the vision-language models (VLMs) have experienced a revolution
and made significant strides in various downstream vision tasks (Radford et al., 2021; Jia et al., 2021; Lu
et al., 2019; Tan & Bansal, 2019; Chen et al., 2020; Ren et al., 2024). For example, CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) learn powerful visual-textual representation via contrastive learning on
large-scale image pairs, which achieve astonishing results on a wide spectrum of vision tasks without any
fine-tuning. BLIP (Li et al., 2022a) introduces a novel VLM that transfers flexibly to both vision-language
understanding and generation tasks.

Some works have been proposed to design vision-language approaches for long-tailed recognition. This
paper (Wang et al., 2023) fixes the visual encoder of CLIP and employs a light decoder to adjust visual
features first. Then they explore improvements of CLIP on imbalanced datasets using prompt tuning, fine-
tuning and incorporating image-modality based methods. BALLAD (Ma et al., 2021) first fully fine-tunes
CLIP on target imbalanced datasets and then refine the biased visual representation using a linear adapter
with a balanced sampling strategy (Kang et al., 2019). Consequently, BALLAD classifies an input image by
querying the maximum similarity with class text prompts in a CLIP manner. VL-LTR (Tian et al., 2022)
presents a novel vision-language framework for imbalanced recognition. It collects additional text descriptions
from Wikipedia and introduces a class-wise image-text contrastive loss for fully fine-tuning CLIP on target
imbalanced datasets. Subsequently, VL-LTR employs a language-guided recognition head for classification by
querying the maximum similarity between the input image and selected text prompts. While both BALLAD
and VL-LTR outperform image-modality based methods on imbalanced recognition benchmarks, the learned
visual representations remain heavily coupled due to the imbalanced data distribution.

3 background

Long-Tailed Classification with Visual Modality. Denote Dtrain = {(xi, yi)}N
i=1 as the whole training

data with length N , where xi ∈ Rd denotes the i-th image input with the dimension d and yi indicates the
corresponding numerical label over K classes. Without loss of generality, we assume N1 > N2 > ... > NK ,
where Nk is the number of training samples in the class k. The prediction of a neural network usually consists
of a feature extractor f : x → u and a linear classifier g : u → y, where u ∈ Rh means the h-dimensional
representation. f and g can be parameterized with Wf and Wg, respectively, which can be learned with
empirical risk minimization over Dtrain. However, this way ignores such class imbalance, resulting in poor
performance on the minority classes.

Optimal Transport. OT has been widely used to measure the cost of transporting one probability measure
to another. We focus on OT for discrete distributions and we refer the readers to Peyré et al. (2019) for
more details. Assume we have two discrete distributions living in the arbitrary same space, formulated as
p = Σn

i=1aiδxi
and q = Σm

j=1bjδyj
. δ indicates the delta function, and both a ∈ ∆n and b ∈ ∆m denote the
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probability simplex of Rn and Rm, respectively. The OT distance between p and q can be expressed by:

OT(p, q) = min
T∈Π(p,q)

⟨T, C⟩ =
n∑

i=1

m∑
j=1

TijCij , (1)

where C ∈Rn×m
>0 is the cost matrix whose element Cij denotes the distance between xi and yj , and trans-

port probability matrix T ∈ Rn×m
>0 satisfies Π(P, Q) :=

{
T|

∑n
i=1 Tij = bj ,

∑m
j=1 Tij = ai

}
. An entropic

constraint, i.e., H(T)=−
∑

nm Tij ln Tij , is introduced in the widely-used Sinkhorn algorithm (Cuturi, 2013)
for discrete OT problems with reduced complexity.

Revisit to CLIP. CLIP (Radford et al., 2021) consists of a vision encoder Evis and a language encoder
Elan, which is trained to align the the visual and textual embedding spaces with a contrastive loss on a
large training dataset consisting of 400 million image-text pairs. Specifically, for the i-th pair including
the input image and the corresponding input text sequence, Evis and Elan are adopted to extract the visual
feature ui and textual feature vi, where ui and vi are both h-dimensional normalized vectors in the joint
multimodal space. During pretraining, CLIP learn to align image-text pairs inside a batch of B image-text
pairs. The overall training objective consists of matching losses from two different directions, i.e., Lv for
matching images to text and Lt for text-to-image matching. They both maximize the cosine similarity for
matched pairs while minimize that of unmatched ones:

Lv = − 1
B

B∑
i=1

exp((u⊤
i vi)/τ)∑B

j=1 exp((u⊤
i vj)/τ)

, Lt = − 1
B

B∑
i=1

exp((v⊤
i ui)/τ)∑B

j=1 exp((v⊤
i uj)/τ)

, (2)

where τ is a temperature hyperparameter, (u⊤
i vi) denotes the cosine similarity between ui and vi, and B

is the batch size. Given the encoders are well pre-trained in massive image-text pairs, CLIP builds a strong
connection between different modalities and thus shows the powerful capability of processing zero-shot visual
recognition. Given K candidate classes, we can construct a set of text prompts t with the length K by filling
description templates like "a photo of a [label].", where the class token is replaced by the specific class
name, such as “dog”. Denote u be image feature extracted by the image encoder for the test image and
[v1, ..., vK ] a set of weight vectors generated by the text encoder for the prompts t. The classification
probability of the test image towards class k is computed as below:

pk = exp((u⊤vk)/τ)∑K
j=1 exp((u⊤vj)/τ)

. (3)

Finally, the test image will be labeled to the class with the highest prediction probability.

Fully Fine-tune CLIP. To effectively leverage the target dataset, fully fine-tuning the textual and visual
encoders in CLIP on Dtrain helps the model adapt to the downstream task. Simply, the text descriptions for
images can be constructed by "a photo of a [label]." if the input data only includes images. Driven by
the task, we can decide to utilize loss Lv or both of Lv and Lt in Eq. 2 for fine-tuning. After that, Evis and
Elan can be adapted to the current dataset.

4 Methodology

4.1 Overall Framework

This paper proposes a novel framework based on the vision-language model to solve the long-tailed classifica-
tion task, where we use CLIP as our backbone. As shown in Figure 2, our proposed framework includes two
phases. Specifically, Phase A fully fine-tunes the CLIP model on the long-tailed training data following (Ma
et al., 2021), which is mentioned in Section 3 and we only utilize loss Lv considering we focus on classifying
the images correctly. However, recalling Figure 1, the fine-tuned textual features are more balanced and dis-
criminative than the fine-tuned visual features. Below, we design Phase B which aims to learn discriminative
visual features and a robust classifier, which is the focus of this work.
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Figure 2: Training process of our proposed framework. The overall method includes two phases. In Phase
A, we fully fine-tune CLIP encoders randomly sampling examples from the imbalanced dataset. In Phase B, we
employ a vision adapter fa

vis to refine biased visual features from Evis and a classifier g for classification, where g
will be initialized by textual features using v from Elan and we adopt a balanced sampling. We then build vision
representation distribution p by refined visual features u∗ and prototype distribution q by the weights W of g. We
finally learn discriminative visual features and robust classifier by OT-based prototype-guided mapping between p
and q.

4.2 Phase B: Visual representation refining and prompt-oriented classifier training

Linear adapter for refining visual features. As shown in part (b) in Figure 2, different from Phase
A, we adopt a class-balanced sampling strategy (Kang et al., 2019) to train the concerned model, which
constructs a balanced group of training samples. Inspired by parameter-efficient adapter modules (Ma et al.,
2021; Gao et al., 2023b; Houlsby et al., 2019), we introduce an additional linear adapter layer fadapter

vision ∈ Rh×h

(fa
vis short) to refine the visual feature u, where we freeze the visual-language backbone obtained from Phase

A. Specifically, given the image-text pair, the textual feature v keep unchanged in Phase A while the visual
feature is further refined as follows:

u∗ = β · fa
vis(u) + (1 − β) · u, (4)

where β is a residual factor for combining the visual feature fa
vis(u) and the visual feature u from the from

the frozen visual encoder Evis in Phase A.

A straightforward approach to optimize the linear adapter is using Lv in Eq. 2 by replacing u with u∗

directly, similar to BALLAD (Ma et al., 2021), where the frozen textual features are viewed as a fixed
classifier. However, this approach ignores the mismatch between refined visual features u∗ from the learnable
adapter and textual features v from the frozen textual encoder.

Learnable classifier initialized by text embeddings. To address the mismatch issue between refined
visual features and textual features and make full use of the valuable knowledge embedded within the text
modality, we introduce a learnable linear classifier and initialize it with textual features associated with the
class labels. As shown in part (c) in Figure 2, denote the linear classifier g : Rh → RK is parameterized by
Wg ∈ Rh×K for ignoring the bias term, where Wg = {w1, ..., wK}. We initialize the classifier weight wk

using the textual feature vk from fine-tuned Elan with k = 1 : K. After we obtain the semantic information
initialized classifier, we can optimize the linear adapter fa

vis and classifier g using cross-entropy (CE) loss as
follows:

LCE = − 1
B

B∑
i=1

K∑
k=1

yi,k · log pk = − 1
B

B∑
i=1

K∑
k=1

yi,k · log exp(g(u∗
i )k)/τ∑K

j=1 exp(g(u∗
i )j)/τ

, (5)

where yi,k = {0, 1} and yi,k = 1 only if the input image xi belongs to class k. B is the batch size. Moving
beyond BALLAD, which uses the text encoder from Phase A as the fixed classifier and learns the adapter
with the contrastive loss, we provide a learnable classifier initialized by the text embeddings and optimize
it with the CE loss. Therefore, our proposed approach can not only avoid the mismatch problem between
refined features and textual features but also leverage rich semantic information within the text modality.
In addition, existing long-tailed classification methods based on the image modality usually adopt CE loss,
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Algorithm 1: Training process.
Input : Dataset Dtrain, encoders Evis and Elan, adapter fa

vis and classifier g, hyper-parameters:{λ1, λ2, γ, β and
τ}

1 Initialize Evis and Elan with CLIP;
2 for epoch = 1, ..., E1 do // Phase A. Fine-tuning backbones
3 for Random sample a mini-batch {(x, y)}B

n=1 ∼ Dtrain do
4 Obtain the visual features u = Evis(x);
5 Obtain the text prompts t by tokenization t = tokenize(y);
6 Obtain the textual features v = Elan(t);
7 Update Evis and Elan by minimizing LA = Lv = − 1

B

∑B

i=1
exp((u⊤

i vi)/τ)∑B

j=1
exp((u⊤

i
vj )/τ)

;

8 end
9 end

10 Freeze Evis and Elan;
11 Random initialize the vision adapter fa

vis;
12 Initialize the classifier g by setting Wg = Elan(t);
13 for epoch = E1 + 1, ..., E1 + E2 do // Phase B. Updating the adapter and classifier.
14 for Balance sample a {(x, y)}B

n=1 ∼ Dtrain do
15 Obtain the refined visual features u∗ = βfa

vis(Evis(x)) + (1 − β)Evis(x) ;
16 Use u∗ and the weights Wg of g to build p and q, see Section 22;
17 Calculate the classification loss LCE = − 1

B

∑B

i=1

∑K

j=1 yi,j · log exp(g(u∗
i )j )/τ∑K

k=1
exp(g(u∗

i
)k)/τ

;

18 Obtain the optimal transport plan T∗ by Eq. 8 and calculate OT distance LOT(p, q) by Eq. 5;

19 Given T∗, calculate the supervised contrastive distance LSCT = 1
B

∑B

i=1

1
|I

+
i

|

∑
j∈I

+
i

||T∗
i −T∗

j ||1

1
|I

−
i

|

∑
k∈I

−
i

||T∗
i

−T∗
k

||1
;

20 Update fa
vis and g by minimizing LB = LCE + λ1LOT + λ2LSCT;

21 end
22 end

such as re-weighting method (Cui et al., 2019; Kang et al., 2019; Zhong et al., 2021), making it possible for
combining our approach with these existing long-tailed methods.

Unsupervised prototype-guided feature learning by Optimal Transport. Although the linear
adapter and classifier can be optimized by the CE loss, we can further provide an unsupervised loss function
to improve their learning quality from the view of distribution matching. More specifically, Figure 1 reveals
that textual embeddings are more discriminative and balanced than visual embeddings and we initialize the
classifier with the textual embeddings, where we consider the classifier weights as the prototypes. Therefore,
it is reasonable to align the distribution of the prototypes from the textual embeddings with the distribution
of the refined visual representations in an unsupervised manner, where we use the optimal transport. As
shown in part (d) in Figure 2, taking a mini-batch B of refined visual features as the example, we can denote
its empirical distribution as p =

∑B
i=1

1
B δu∗

i
. Besides, the empirical distribution of K prototypes from all

classes can be formulated as q =
∑K

k=1
1
K δwk

. In order to align the distributions of prototypes and refined
visual features, we can minimize the OT distance between p and q, formulated as follows:

LOT(p, q) = min
T∈Π(p,q)

⟨T, C⟩ − γH(T), (6)

where γ > 0 is a hyper-parameter for the entropy constraint H(T), the transport plan T satisfies Π(p, q) :={
T|

∑B
i=1 Tnk = 1/K,

∑K
k=1 Tik = 1/B

}
, and the cost function Cik measures the distance between visual

feature u∗
i and a prototype wk. Without specific instructions, we use cosine similarity as the distance metric,

i.e., Cik = 1 − cos(u∗
i , wk), though other reasonable choices can also be used here. Intuitively, minimizing

this expected moving cost encourages the refined visual features and prototypes to be aligned. Ideally, a
refined visual feature should be close to its corresponding class prototype and far away from other class

6



Under review as submission to TMLR

prototypes according to their similarity. Therefore, introducing the OT loss is helpful for learning more
discriminative visual features and robust classifier.

Contrastive supervised constraint on transport plan. Notably, the introduced OT loss serves as
an unsupervised regularization term of the CE loss. We can further introduce a supervised contrastive
constraint based on the learned transport plan to assist the learning of the adapter encoder and classifier
weights (prototypes). The motivation of this constraint is that the samples from the same class should close
to each other while the samples from different classes should be far apart, where the label of input image
is available. Considering the learned optimal transport plan T∗ depends on the cost matrix C, which relies
on the to-be-learned linear adapter and prototypes, we can view the i-th row of transport plan matrix T∗

as another feature of the i-th sample. Now, the similarity between T∗
i and T∗

j can inherit the relationship
between the i-th sample and the j-th sample. Therefore, we formulate the supervised contrastive loss as
follows:

LSCT = 1
B

B∑
i=1

1
|I+

i
|

∑
j∈I+

i
||T∗

i − T∗
j ||1

1
|I−

i
|

∑
k∈I−

i
||T∗

i − T∗
k||1

, (7)

where || · ||1 indicates the L1 distance, I+
i denotes a positive set (has the same label with sample i) of T∗

i

and I−
i is a negative set. Designed in this way the refined visual features from the same class are optimized

to be close to each other; and vice versa, improving the intra-class compactness and inter-class separability.
We can obtain the optimal transport plan T∗ ∈ RN×K

>0 with a fast optimization solution in a few iterations:

T∗ = diag(a(t))exp(−C/γ)diag(b(t)), (8)

where t indicates the current iteration and in each iteration, a(t) = a/((exp(−C/γ)b(t−1))) and b(t) =
b/((exp(−C/γ)⊤a(t−1))) with a(0) = 1

B and b(0) = 1
K .

Overall loss function for Phase B. In Phase B, the overall objective function for optimizing the vision
adapter fa

vis and classifier g is
LB = LCE + λ1LOT + λ2LSCT, (9)

where λ1 and λ2 are hyper-parameters. We give an overall algorithm process of our method shown in 1.

In conclusion, based on the observation that fine-tuned visual features from CLIP are more entangled than
textual features, we design to employ a linear adapter to refine the coupled vision representation and a
learnable classifier initialized by text embeddings to keep the consistency between image and text modality.
Further, by considering the weights of the classifier as prototypes, we design an unsupervised prototype-
guided feature learning loss to help separate vision distribution by optimal transport. To better use the
supervised signals, we propose a contrastive supervised loss on transport plan to further robust training
and classification. Our proposed method gives a novel and effective framework motivated by the natural
discrepancy between data distributions to address the issue of long-tailed vision recognition based on the
vision-language model.

5 Experiments

We conduct extensive experiments to evaluate our method, including comparison with SOTA methods on
benchmarks, ablation studies, visualization, etc. The imbalance factor (IF) of a dataset can be defined as
the data point amount ratio between the largest and smallest classes.

Datasets and Evaluation Metric. We evaluate our methods on ImageNet-LT (Liu et al., 2019), Places-
LT (Liu et al., 2019) and iNaturalist2018 (Van Horn et al., 2018). Among these datasets, ImageNet-LT is
a subset from ImageNet-2012 (Deng et al., 2009) by downsampling, which contains 115.8K training images
from 1000 classes with IF = 1280

5 . Places-LT is also a long-tailed version of Placse-365 dataset (Zhou et al.,
2017), which includes 62.5K images from 365 classes and IF = 4980

5 . iNaturalist2018 dataset (Van Horn
et al., 2018) is a real-world dataset for fine-grained and long-tailed classification tasks, which has 437.5K
training images with IF = 1000

2 . We evaluate the method on the corresponding test datasets, which are all
balanced for 50 images per class in ImageNet-LT, 100 for Places-LT and 3 for iNaturalist2018. Following the
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Table 1: Test top-1 accuracy (%) on ImageNet-LT and Places-LT. All the backbones are initialized with CLIP
weights and based on the ResNet and ViT structure.†, ‡ and * indicates the results from Ma et al. (2021), Tian et al.
(2022) and Zhou et al. (2022), respectively. All the backbones are initialized with CLIP weights. -a indicates using
additional texts for training.

Method Backbone ImageNet-LT Places-LT
Many Medium Few Overall Many Medium Few Overall

NCM (Kang et al., 2019) RN50‡ 58.9 46.6 31.1 49.2 37.1 30.6 19.9 30.8
cRT (Kang et al., 2019) RN50‡ 63.3 47.2 27.8 50.8 38.5 29.7 17.6 30.5
LWS (Kang et al., 2019) RN50‡ 62.2 48.6 31.8 51.5 36.0 32.1 20.7 31.3

τ -normalized (Kang et al., 2019) RN50‡ 60.9 48.4 33.8 51.2 34.5 31.4 23.6 31.0
PaCo (Cui et al., 2021) RN50† - - - 60.2 - - - -

Zero-Shot CLIP (Radford et al., 2021) RN50‡ 60.8 59.3 58.6 59.8 37.5 37.5 40.1 38.0
BALLAD (Ma et al., 2021) RN50† 71.0 66.3 59.5 67.2 46.7 48.0 42.7 46.5

VL-LTR-a (Tian et al., 2022) RN50‡ 77.8 67.0 50.8 70.1 51.9 47.2 38.4 48.0
VL-LTR (Tian et al., 2022) RN50‡ 77.9 66.5 49.3 69.4 52.7 46.8 36.3 47.3

OURS RN50 72.1 70.9 63.4 70.3 47.5 49.5 50.5 49.0

Method Backbone ImageNet-LT Places-LT
Many Medium Few Overall Many Medium Few Overall

Zero-Shot CLIP (Radford et al., 2021) ViT-B/16 69.2 67.6 67.7 68.3 38.3 39.2 45.9 40.2
CLIP+LP (Radford et al., 2021) ViT-L/14* 87.3 65.0 18.9 67.4 55.6 34.4 14.4 38.2

CoOp (Zhou et al., 2022) ViT-L/14* - - - 60.3 - - - 26.1
BALLAD (Ma et al., 2021) ViT-B/16† 79.1 74.5 69.8 75.7 49.3 50.2 48.4 49.5
VL-LTR (Tian et al., 2022) ViT-B/16‡ 84.5 74.6 59.3 77.2 54.2 48.5 42.0 50.1

OURS ViT-B/16 81.4 77.7 71.7 78.2 49.8 52.6 54.2 51.9

common setting(Liu et al., 2019; Kang et al., 2019; Ma et al., 2021; Tian et al., 2022), we report the overall
top-1 accuracy and also report the top-1 accuracy of many-shot (≥ 100 samples), medium-shot (100 ∼ 20
samples) and few-shot (≤ 20 samples) according to the number of training samples in each class.

Baselines. We can compare our framework with the following methods: 1) Visual encoder of CLIP
+ imbalanced learning algorithms: The classical imbalanced learning methods designed for the image-
modality are re-implemented using the pre-trained visual encoder of CLIP by previous works (Tian et al.,
2022; Ma et al., 2021), including NCM (Kang et al., 2019), cRT (Kang et al., 2019), LWS (Kang et al.,
2019), τ -noimalized (Kang et al., 2019) and PaCo (Cui et al., 2021). PaCo falls into contrastive learning
and others belong to the decoupling method. 2) CLIP and its variants: Considering we utilize CLIP
as our backbone, we select zero-shot CLIP, CLIP + linear probing (Radford et al., 2021) and CoOp (Zhou
et al., 2022) as baselines. 3) Multi-Modality Methods: Methods employ CLIP model and text prompts
for imbalanced vision recognition, including BALLAD (Ma et al., 2021) and VL-LTR (Tian et al., 2022),
which are our main competitors. Besides, we also comprehensively compare our method with competitive
image-modality-based methods in App. C.

Implementation details. We employ ResNet-50 (He et al., 2016) or ViT-B/16 (Dosovitskiy et al., 2020)
as our visual backbone, and a 12-layer transformer (Radford et al., 2019) as the language backbone, where
backbones are initialized by CLIP weights and detailed training hyper-parameters can be found in App. B.

5.1 Experiments on ImageNet-LT and Places-LT

Results. As listed in Table 1, our method outperforms the baseline methods by a significant margin on
both datasets, especially on the few-shot setting. In particular, our method achieves 70.3% and 49.0%
overall accuracy on ImageNet-LT and Places-LT when equipped with ResNet-50, which is 3.1% and 2.5%
higher than BALLAD, and 0.2% and 1.0% higher than VL-LTR. Based on ViT-B/16, our method achieves
78.2% and 51.9% overall accuracy, which is 2.5% and 2.4% higher than BALLAD, and 1.0% and 1.8% higher
than VL-LTR. This indicates our method outperforms the previous under different backbones. Besides, for
BALLAD, our method has a comprehensive lead in terms of the accuracy on three different shots. For VL-
LTR, our method especially obtains large performance gains on concerned tail classes. We can observe that
our method has 12.6% and 12.1% improvements on the few-shot split on ResNet-50 for both two datasets,
and that is 12.4% and 12.2% on ViT/B-16, when compared with VL-LTR (w/ additional texts). Even for
medium-shot split, our method also has a significant performance improvement over VL-LTR. On the other
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hand, our method does not require additional text descriptions and still outperforms VL-LTR with less
training data. When using the same amount of training data (prompt templates only, no additional text
descriptions), our method shows a more significant performance improvement over VL-LTR from 0.2% to
0.9% on ImageNet-LT and 1.0% to 1.7% on Places-LT based on ResNet-50. These results suggest that our
method is a more effective approach for long-tailed image classification based on CLIP.

5.2 Experiments on iNaturalist2018
Table 2: Test top-1 accuracy (%) on iNatural-
ist2018. All the backbones are initialized with
CLIP weights except for PaCo. †, ‡ and * indi-
cates the results from (Ma et al., 2021), (Tian
et al., 2022) and (Wang et al., 2023). All the
backbones are initialized with CLIP weights. -
a indicates using additional texts for training.

Method Backbone iNaturalist2018
Overall

NCM (Kang et al., 2019) RN50‡ 65.3
cRT (Kang et al., 2019) RN50‡ 69.9
LWS (Kang et al., 2019) RN50‡ 71.0
τ -normalized (Kang et al., 2019) RN50‡ 71.2
PaCo (Cui et al., 2021) RN50† 73.8

Zero-shot CLIP (Radford et al., 2021) RN50‡ 3.4
ViT-L/14* 5.5

BALLAD (Ma et al., 2021) RN50† 74.2

VL-LTR-a (Tian et al., 2022) RN50‡ 74.6
ViT-B/16‡ 76.8

OURS RN50 75.5
ViT-B/16 77.6

VL-LTR-a-384 ViT-B/16‡ 81.0
OURS-384 ViT-B/16 82.3

Results. As shown in Table 2, we can see that our proposed
method achieves better performance on iNaturalist2018 under
both ResNet-50 and ViT-B/16. Compared to zero-shot CLIP,
VL-LTR and our method both achieve significant performance
improvements, which are mainly due to the better utilization
of CLIP for imbalanced fine-grained vision classification. On
ResNet-50, our method outperforms BALLAD by 1.3% and
VL-LTR by 0.9%. On ViT-B/16, we have a 0.8% improvement
than VL-LTR when the input resolution is 3×224×224, and it
is 1.3% when the resolution is 3 × 384 × 384. Our experiments
show that our method can achieve higher performance across
different backbones, especially without using any additional
text data for training.

5.3 Ablation Study

In this section, we conduct extensive ablation studies to inves-
tigate reasons for the performance improvement of our method.
Without being specifically mentioned, the training settings re-
main the same as in Section 5.1 and Section 5.2.

Proposed Loss. To examine the effectiveness of the proposed
loss functions, we perform comprehensive ablation studies on loss functions, where we report top-1 overall
accuracy. ✓ indicates its coefficient of 0.1 and - represents that of 0. As shown in Table 3, with the help
of LOT and LSCT, performance on all three datasets increases 0.55%, 0.66% and 0.28% on ResNet-50 and
0.45%, 0.43% and 0.46% on ViT-B/16. These results prove the effectiveness and generality of the proposed
loss functions in helping improve performance. Beyond the accuracy, we also observe that the introduction
of LOT and LSCT helps convergence of the optimization as shown in Figure 3.

Table 3: Ablation on proposed loss functions on ImageNet-LT,
Places-LT and iNaturalist2018 (iNat2018) with different backbones.

Backbone LCE LOT LSCT ImageNet-LT Places-LT iNat2018

RN50
✓ - - 69.37 48.33 74.93
✓ ✓ - 70.07 48.71 -
✓ ✓ ✓ 70.27 49.03 75.21

ViT-B/16
✓ - - 77.10 50.89 77.09
✓ ✓ - 77.84 51.64 -
✓ ✓ ✓ 78.25 51.89 77.55

Table 4: Ablation on architecture on
ImageNet-LT and Places-LT with ViT-B/16 as
the backbone.

fa
vis fa

lan g ImageNet-LT Places-LT
- - - 72.62 40.83
✓ - - 76.79 49.87
- ✓ - 73.22 49.34
✓ ✓ - 76.49 49.50
- - ✓ 77.52 51.44
✓ - ✓ 78.24 51.89
✓ ✓ ✓ 77.36 51.14

Architecture. To explore how the proposed architecture influences performance, we provide ablation studies
on the architecture. We also take the language adapter for comparison, even we though do not adopt it
in our framework shown in Table 4. Overall, fa

vis, fa
lan and g indicate the vision adapter, language adapter

and classifier, respectively. The first group represents the framework without classifier and thus we only use
LCE as the optimization objective to update adapters. As can be seen, the best choice is to only apply the
linear adapter to the visual branch. The second group represents the framework with the linear classifier g

9
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Figure 3: Visualization of top-1 overall accuracy per training epoch on ImageNet-LT and Places-LT on ViT-B/16.

Table 5: Experiments on the combination of our framework with other methods on ViT-B/16.

Method ImageNet-LT Places-LT
Many Medium Few Overall Many Medium Few Overall

BALLAD (Ma et al., 2021) 79.1 74.5 69.8 75.7 49.3 50.2 48.4 49.5
VL-LTR (Tian et al., 2022) 84.5 74.6 59.3 77.2 54.2 48.5 42.0 50.1

OURS 81.42 77.73 71.72 78.24 49.82 52.56 54.20 51.89
CB-CE (Cui et al., 2019) 81.18 77.73 72.14 78.29↑ 0.04 50.28 52.24 54.25 51.99↑ 0.10

+LWS (Kang et al., 2019) 81.18 77.74 72.17 78.30↑ 0.05 50.18 52.24 54.24 52.02↑ 0.13

+MisLAS (Zhong et al., 2021) 81.03 77.85 72.44 78.34↑ 0.10 50.22 52.32 54.72 52.07↑ 0.18

+TTA (Shanmugam et al., 2021) 81.29 78.39 73.12 78.79↑ 0.55 50.24 53.04 54.76 52.42↑ 0.53

initialized by text embeddings and we use LB to optimize models. A comparison of the second and fourth
rows shows that our approach already achieves better classification performance when combined with the
classifier g alone, with improvements of 0.73% and 1.57%. Furthermore, in the sixth row, the combination
of fa

vis and g shows the optimal choice for both datasets.

Combination with other methods for further performance improvement. Due to employing a linear
classifier for vision recognition, we can leverage classifier-based strategies for vision-modality imbalanced
methods into our framework for further improvement. In order to demonstrate the generality and the
effectiveness of our framework, we conduct experiments on the combination of our method with loss re-
weighting (class balanced loss (Cui et al., 2019)), decoupling (LWS (Kang et al., 2019), MisLAS (Zhong
et al., 2021)) and test-time aggregation (TTA (Shanmugam et al., 2021)). As shown in Table 5, we can
observe that with the help of TTA, our method obtains the most performance improvement by 0.55%
on ImageNet-LT and 0.53% on Places-LT. The results show the generality of our proposed framework in
addressing the long-tailed recognition issue by cooperating with other methods.

Visualization of logits. As shown in Figure 4, we visualize output logits from the classifier g on ImageNet-
LT based on ViT-B/16 using t-SNE (Van der Maaten & Hinton, 2008), where we randomly select the test
data of 10 classes. In terms of CE loss as the optimization objective, we can observe that the output logits
are entangled heavily. As expected, our method helps logits decoupled by making visual features more
discriminative and prototypes far from each other. Therefore, it reveals visually balanced textual features
as prototypes can help tackle imbalanced vision recognition.

Logits visualization

OURS

Logits visualization

CE

Class 918
Class 730

Class 867
Class 578

Class 59
Class 651

Class 329
Class 634

Class 67
Class 888

Class 805 Class 350 Class 343 Class 690 Class 539

Figure 4: Visualization of the output logtis on ImageNet-LT on ViT-B/16.

10



Under review as submission to TMLR

5.4 Learnable Linear Classifier vs Frozen Linear Classifier

Given that we utilize textual prototypes as the initialization for the linear classifier and subsequently in-
troduce an additional loss to iteratively update the classifier, there exists a potential risk of diminishing
the consistency between visual features and text prototypes (classifier weights). This concern is examined
through both experimental results and visualizations.

Table 6: Ablation on the update of the linear
classifier on ViT/B-16.

Batch Size Places-LT
Many Medium Few Overall

Learnable classifier 49.8 52.6 54.2 51.9
Frozen classifier 49.0 51.4 50.8 50.4

Firstly, as show in Table 6, results indicate a noteworthy per-
formance improvement facilitated by the learnable linear clas-
sifier. This suggests that, contrary to the potential risk, the
introduced update mechanism actually reinforces the consis-
tency between visual features and text prototypes. We posit
that the weights of the classifier serve as the evolved textual
prototypes, and the observed performance enhancement im-
plies that these weights have undergone substantial learning.
This, in turn, signifies an improvement in the textual proto-
types and a heightened alignment and coherence with visual features.

On the other hand, we provide visualizations of refined visual features and their corresponding textual
prototypes (classifier parameters) under scenarios where the classifier is frozen versus when it is learnable.
As shown in Figure 5, the visual results demonstrate that the learnable textual prototypes (linear classifier)
exhibit a more effective convergence toward the center of visual features. This observation attests to the well-
maintained consistency between the two components. Moreover, the preserved consistency, in turn, facilitates
a tighter clustering of the learned visual features around their respective prototypes. Therefore, from a visual
standpoint, this underscores the indispensability of the learnable linear classifier. The visual evidence affirms
that the learnable linear classifier is not only beneficial but also crucial in sustaining the alignment between
visual features and textual prototypes, ultimately leading to a more balanced representation.

Frozen Linear Classifier Learnable Linear Classifier

Class 88 Class 126 Class 195 Class 37 Class 56 Class 93 Class 100 Class 128 Class 137 Class 188 Feature Prototype

Figure 5: visualizations of refined visual features and their corresponding textual prototypes (classifier parameters)
under scenarios where the classifier is frozen versus when it is learnable.

5.5 The effectiveness of the utilized decoupling training scheme

As mentioned in Section 4, we decouple the model training into two phases. In Phase A, we fine-tune the
vision and language encoders of pre-trained CLIP on a target imbalanced dataset. In Phase B, we utilize a
linear adapter for further discriminate vision representation learning and a classifier for robust long-tailed
recognition. Another learning scheme for the model is to jointly train two encoders, the adapter and classifier
rather than decoupling the training process. As shown in Table. 8, we can first observe that our method
based on the fine-tuned CLIP gives the best performance. When compared with the joint training scheme for
training two phases at the same time, the decoupling training scheme shows better performance in helping
separate vision representation learning. This demonstrates that our proposed decoupled training of the
model is more effective in handling imbalanced distribution.
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5.6 Expansion to Few-shot Learning

Our motivation, to guide the learning of robust visual features through the use of textual representation, also
holds the potential for enhancing visual reasoning capabilities in scenarios with limited data, for example, the
few-shot learning. Here, we conduct experiments on the Caltech101 dataset, combining our method with Tip-
Adapter (Zhang et al., 2021) and PLOT (Chen et al., 2022). In the implementation, we utilize textual features
to initialize the classifier and then apply our proposed LOT and LSCT. As shown in Table 7, results indicate
that our method continues to assist Tip-Adapter and PLOT in achieving improved performance across
various shot scenarios in few-shot learning tasks. This underscores the versatility of our proposed framework
in addressing more generalized vision reasoning, thereby expanding the applicability of our framework.

Table 7: The few-shot performance of the combination of our
method and Tip-adapter-F and PLOT on Caltech101 dataset. The
baseline results are from (Chen et al., 2022).

Methods 1-shot 2-shots 4-shots 8-shots 16-shots
Tip-Adapter-F 89.33 89.74 90.56 91.44 92.86

+ OURS 89.61↑ 0.27 90.98↑ 1.24 91.35↑ 0.79 92.08↑ 0.64 93.27↑ 0.41

PLOT 89.83 90.67 90.80 91.54 92.24
+ OURS 89.90 ↑ 0.07 91.56↑ 0.89 91.20↑ 0.40 92.90↑ 1.36 93.47↑ 1.23

Table 8: Ablation of the necessity of fine-
tuning backbone and two-phase training frame-
work on ImageNet-LT on ViT-B/16. D- indi-
cates decoupled training between phase A and
phase B. J- indicates jointly training for both
phases.

Scheme ImageNet-LT
Many Medium Few Overall

zero-shot CLIP 69.21 67.59 67.74 68.30
J-{zero-shot CLIP + OURS} 74.44 76.17 70.69 74.42
D-{zero-shot CLIP + OURS} 75.26 76.55 71.15 75.32

fine-tuned CLIP 83.49 68.29 57.14 72.63
J-{fined-tuned CLIP + OURS} 78.26 76.24 76.09 77.00
D-{fined-tuned CLIP + OURS} 81.42 77.73 71.72 78.255.7 Computation Cost Evaluation.

As shown in Table 9, we provide the comparison of computation cost evaluation among BALLAD (Ma et al.,
2021), VL-LTR (Tian et al., 2022) and ours. We report the number of training epochs in both phases,
training time consumption in Phases B, inference time, the requirement of additional text descriptions, and
overall performance. Our method uses acceptable training time to obtain the best performance.

Table 9: Computation cost evaluation on Places-LT based on ViT-B/16. We test all the methods on the same
device with a single GPU and batch size is 512. The input size is 3 × 224 × 224. We report the average value of
three independent runs and compare the cost from the perspective of Epoch, Training Time (in phase B, minutes),
Inference Time (images/s), whether using additional data and Accuracy.

Method Epoch Training Time Inference Time Additional Data Overall Accuracy
BALLAD 50+10 53.3 173.8 - 49.5
VL-LTR 50+50 153.4 136.7 ✓ 50.1
OURS 50+20 109.8 158.9 - 51.9

5.8 Others

Please refer to App. D for a deep analysis of our method, including the influence of initialization, batch size,
and sampling strategies. We give a visualization of the transport plan to prove its effectiveness in capturing
the similarity between visual features and prototypes in App. E and also state the limitations of our method.

6 conclusion

In summary, this paper proposes a novel and effective framework for adapting CLIP to long-tailed vision
recognition. Based on the observation that fine-tuned textual features are still nearly balanced, we propose
an OT-based prototype-guided framework for disentangled vision representation learning. Further, we design
a supervised contrastive loss based on the transport plan for further robust visual feature learning. Notably,
our method does not require additional data for training and can quickly leverage traditional image-modal
methods into the framework for further improvements. Extensive experiments on benchmark datasets prove
that our framework can help discriminative visual feature learning and achieve better long-tailed classification
performance.
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A Visualization Details about Motivation

For the implementation details of Figure 1, we follow the full fine-tuning of CLIP encoders mentioned in
the Section. 3 to make the vision and language encoders of CLIP adapt to the Places-LT training dataset,
where the text inputs are constructed by filling "a photo of a [label].". After fine-tuning, we build the
vision-language input pairs on the target dataset, where we use 80 prompt sentences for each class to better
visualize the textual feature distribution. These sentences are autogenerated on the basis of the prompt
templates provided in CLIP. Finally, we use fined-tuned CLIP encoders to extract features and use t-SNE
for visualization.

Here, we provide the visualization of 10 classes with the least number of samples based on pre-trained and
fine-tuned CLIP, shown in Figure 6 and Figure 7. We can observe that, the imbalanced fine-tuning has
little influence on the distribution of visual and textual features, where the visual features are coupled even
without fine-tuning. This also demonstrates that pre-trained CLIP without fine-tuning does not have enough
capacity to recognize the tail classes of the Places-LT dataset perfectly and we can observe the imbalanced
fine-tuning. However, textual features are more discriminative than visual features, which show a potential
direction for disentangled learning of balanced vision representation.

We also provide the visualization of 10 classes with the most number of samples based on vanilla pre-trained
and fine-tuned CLIP, shown in Figure 8 and Figure 9. We can observe that these classes have a more
discriminative and balanced representation distribution than classes with the least samples. This indicates
that the encoders have the essential ability to handle head classes, where their representation distributions are
relatively disentangled. Therefore, through the bridge of language modality, we can enhance the independence
and separability of the vision distribution of the tail class. Ultimately, the discriminability of the distribution
of tail classes should be close to that of head classes.

Pre-trained Textual Features Pre-trained Visual Features

Class 88
Class 126

Class 195
Class 37

Class 56
Class 93

Class 100
Class 128

Class 137
Class 188

Figure 6: Visualization of pre-trained features from
CLIP on 10 classes with least number of samples on
Places-LT based on ViT-B/16.
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Figure 7: Visualization of fine-tuned features from
CLIP on 10 classes with least number of samples on
Places-LT based on ViT-B/16.
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Figure 8: Pre-trained features from CLIP on 10
classes with most number of samples.
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Figure 9: Fine-tuned features from CLIP on 10
classes with most number of samples.
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Table 10: Detailed hyper-parameter settings for Phase A and Phase B training on ImageNet-LT, Places-LT and
iNaturalist2018. LR indicates the learning rate.

Phase Dataset Batch Size Epoch LR of encoders LR of the adapter LR of the classifier Momentum Weight Decay Scheduler Sampler

A
ImageNet-LT 512 50 1e−5 - - 0.9 5e−5 cosine Random

Places-LT 512 50 1e−5 - - 0.9 5e−5 cosine Random
iNaturalist2018 512 200 1e−6 - - 0.9 5e−5 cosine Random

B
ImageNet-LT 512 50 - 0.2 1e−3 0.9 5e−5 cosine Balanced

Places-LT 512 20 - 0.2 1e−3 0.9 5e−5 cosine Balanced
iNaturalist2018 512 50 - 0.2 1e−3 0.9 5e−5 cosine Balanced

Table 11: Comprehensive comparison results on ImageNet-LT, Places-LT and iNaturalist2018. Initialization indi-
cates the initialization weights, where ImageNet means the model is pre-trained on the full ImageNet dataset and
CLIP means the model is initialized by the CLIP weights.

Methods Initialization Backbone ImageNet-LT Places-LT iNat2018
Many Medium Few Overall Many Medium Few Overall Overall

NCM (Kang et al., 2019) ImageNet RNXT152 60.3 49.0 33.6 51.3 40.4 37.1 27.3 36.4 -
CLIP RN50 58.9 46.6 31.3 49.2 37.1 30.6 19.9 30.8 65.3

cRT (Kang et al., 2019) ImageNet RNXT152 64.7 49.1 29.4 52.4 42.0 37.6 24.9 36.7 -
CLIP RN50 63.3 47.2 27.8 50.8 38.5 29.7 17.6 30.5 69.9

τ -noamrlized (Kang et al., 2019)
ImageNet RNXT152 62.2 50.1 35.8 52.8 37.8 40.7 31.8 37.9 -

CLIP RN50 60.9 48.4 33.8 51.2 34.5 31.4 23.6 31.0 71.2

LWS (Kang et al., 2019)
ImageNet RN50 57.1 45.2 29.3 47.7 - - - - 69.5
ImageNet RNXT152 63.5 50.4 34.2 53.3 40.6 39.1 28.6 37.6 -

CLIP RN50 62.2 48.6 31.8 51.5 36.0 32.1 20.7 31.3 71.0

RIDE (4 Experts) (Wang et al., 2021b) ImageNet RN50 68.2 53.8 36.0 56.8 - - - - -
ImageNet RN50 66.2 52.3 36.5 55.4 - - - - 72.6

PaCo (Cui et al., 2021) ImageNet RNXT101 68.2 58.7 41.0 60.0 36.1 47.9 35.3 41.2 -
ImageNet RN152 - - - - - - - - 75.2

DeiT-B/16 (Touvron et al., 2021) - - - - - - - - - - 73.2
LiVT (Xu et al., 2023) ImageNet ViT-B/16 73.6 56.4 41.0 60.9 48.1 40.6 27.5 40.8 76.1
LPT (Dong et al., 2022) ImageNet ViT-B/16 - - - - 49.3 52.3 46.9 50.1 76.1

BALLAD (Ma et al., 2021) CLIP RN50 71.0 66.3 59.5 67.2 46.7 48.0 42.7 46.5 74.2
CLIP ViT-B/16 79.1 74.5 69.8 75.7 49.3 50.2 48.4 49.5 -

VL-LTR (Tian et al., 2022) CLIP RN50 77.8 67.0 50.8 70.1 51.9 47.2 38.4 48.0 74.6
CLIP ViT-B/16 84.5 74.6 59.3 77.2 54.2 48.5 42.0 50.1 76.8
CLIP RN50 72.1 70.9 63.4 70.3 47.5 49.5 50.5 49.0 75.5OURS CLIP ViT-B/16 81.4 77.7 71.7 78.2 49.8 52.6 54.2 51.9 77.6

OURS + TTA CLIP ViT-B/16 81.3 78.4 73.1 78.8 50.2 53.0 54.8 52.4 78.9

B Implementation details and Detailed information of training hyper-parameters

For data pre-processing, images are resized to 224×224 and augmented with crop and random horizontal flip
following (Ma et al., 2021; Tian et al., 2022). We adopt the class-balanced sampling strategy following (Kang
et al., 2019), where the process can be decoupled into two steps-first selecting classes from the list of categories
in equal probability and then randomly sampling a data point from the selected class. Unless otherwise
specified, the hyper-parameter γ for the OT entropy constraint is 0.1 and the maximum iteration number of
the Sinkhorn algorithm is 200. For τ , we set it as 0.01 in Phase A and 0.02 in Phase B. For residual factor β
in the adapter, we set it as 0.2. In Phase B, λ1 = 1 and λ2 = 1, where ablation studies are provided. All the
experiments are conducted on 4 Tesla-A100 GPUs (Phase A) and 4 RTX 4090 GPUs (Phase B). We report
the average results by three runs. As shown in Table 10, we give the detailed training hyper-parameters in
two phases given three benchmarks for reproducing the results.

C Comprehensive comparison with competitive methods

In this section, we give a comprehensive comparison between our method with competitive methods ad-
dressing the long-tailed recognition issue. From the Table. 11, we can observe that our method achieves the
better performance on three benchmarks under different architectures even without test-time aggregation.
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D Deep Ablation Study
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Figure 10: Visualization of the output logtis on ImageNet-LT on ViT-B/16.

D.1 The influence of the initialization of weights.

Considering the classifier g is initialized by text prompt embeddings, we conduct extensive experiments to
investigate how the initialization influences the performance. All the experiments are training for 100 epochs.
As shown in Figure 10, the performance of random initialization is significantly lower than that of using
prompt embeddings as initialization. In addition, with the help of our proposed loss, the results of random
initialization can even be further improved compared to vanilla cross-entropy loss (CE), which also proves
the effectiveness of our proposed method in help better representation learning. In addition, beyond using
a single prompt embedding as the initialization of the classifier, i.e., "a photo of a [label].", we also
consider how to better utilize the information of multiple prompt embeddings to help classification. From
the representation perspective, we hope that the learned visual features can be close to multiple prompt
embeddings at the same time. In practice, we simply average the multiple prompt embeddings of each class
and then use them as the initialization of the classifier g. As shown in the second group, overall performance
has been improved by 0.36% in ImageNet-LT and 0.39% in Places-LT with the increasing of number of
prompts from 1 to 80. This shows that our method can also leverage multiple text prompts for better
classification performance. More value details can be found in Table. 12.

D.2 The influence of batch size

Considering the computation of the proposed LOT in Eq.6 is influenced by the input batch size B, we conduct
an ablation study on it to examine how the batch size affects our method. We use a batch size of 512 as
a benchmark, which corresponds to an adapter learning rate of 0.2 and a classifier learning rate of 0.001.
When the batch size increases or decreases, the learning rate will also proportionally increase or decrease.
As shown in Table 13, setting batch size as 512 gives the best performance.
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Table 12: Ablation on number of prompts for initialization of classifier g on ImageNet-LT and Places-LT based on
ViT-B/16. A indicates the number of prompts and B indicates CE (C) or OURS (O) for “A - B”, where A = 0
means we randomly initialize the classifier g, A = 1 means we use the embedding of “a photo of {classname}” for
the initialization and the others means we use the average of the corresponding number of prompt embeddings.

Number of Prompts ImageNet-LT Places-LT
Many Medium Few Overall Many Medium Few Overall

0 - C 78.07 74.75 64.63 74.65 46.05 45.99 46.30 45.88
0 - O 78.88 75.91 65.60 75.81 ↑ 1.16 47.11 46.66 44.80 46.46 ↑ 0.58

1 - C 75.82 75.90 78.76 76.26 48.59 50.67 53.18 50.14
1 - O 80.37 77.44 74.65 77.61↑ 1.35 47.96 52.37 55.92 51.48↑ 1.34

10 - C 76.47 76.44 77.59 76.61 48.61 50.81 53.67 50.35
10 - O 80.45 77.56 74.45 77.79↑ 1.18 49.26 52.02 55.00 51.61 ↑ 1.26

20 - C 76.63 76.70 77.43 76.77 48.57 50.64 53.96 50.54
20 - O 80.37 77.56 74.54 77.85↑ 1.08 49.19 52.16 55.09 51.66 ↑ 1.08

40 - C 77.26 76.96 76.76 77.05 48.68 50.79 54.34 50.72
40 - O 80.47 77.55 74.43 77.98↑ 0.93 49.84 52.39 53.72 51.73 ↑ 1.01

80 - C 77.43 77.19 76.34 77.14 48.73 51.21 54.65 50.89
80 - O 82.09 77.65 72.34 78.25↑ 1.10 49.82 52.56 54.20 51.89 ↑ 1.00

Table 13: Ablation on training batch size of Phase B on ImageNet-LT and ViT/B-16.

Batch Size ImageNet-LT
Many Medium Few Overall

128 81.16 77.27 72.54 78.20
256 81.27 77.08 72.88 78.23
512 81.09 77.65 72.34 78.24
1024 80.68 77.45 72.84 78.23

D.3 Performance of different sampling strategies

In addition, we delve into various sampling strategies such as class-balanced sampling, square root sampling,
and mix-balanced sampling for Phase B. Class-balanced sampling selects categories from the original dataset
with equal probability, unlike the natural instance-balanced sampling that chooses instances irrespective of
their classes. This process can be broken down into two steps - first, classes are selected equally from the list of
categories, and then a data point is randomly sampled from the chosen class. Square-root sampling (Mahajan
et al., 2018) initially calculates the square root of the number of head classes, then re-normalizes and carries
out sampling based on the resulting distribution. Mix-balanced sampling merges instance-balanced sampling
and class-balanced sampling, thereby leveraging both strategies to prevent overfitting in early epochs and
underfitting in late epochs. Inspired by (Kang et al., 2019), we employ a soft version of mix-balanced
sampling to dynamically interpolate between instance-balanced sampling and class-balanced sampling as
learning advances. As demonstrated in Table 14, class-balanced sampling can significantly aid medium-shot
and few-shot categories. Therefore, we utilize class-balanced sampling as the balancing method of BALLAD.

D.4 The influence of different metrics in supervised contrastive loss

To demonstrate the efficiency of the proposed supervised contrastive loss based on the transport plan, we
compare different metrics serving the distance measurement in Eq. 7 on ImageNet-LT based on ViT-B/16.
As shown in Table. 15, the first group indicates that we use the logits from the classifier g or cost function
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Table 14: Comparison of different balanced sampling strategies on ImageNet-LT on ViT/B-16.

Balance method ImageNet-LT
Many Medium Few Overall

Class-Balanced 81.42 77.73 71.72 78.25
Square-root 80.83 76.87 70.32 78.00

Mix-balanced 81.63 77.28 70.74 78.13

C in Eq. 6 to compute LSCT instead of T∗. We can observe that when employing logits from g to compute
the loss, the model will collapse and performance is going to degenerate to 0. Maybe it is incurred that the
logits will used to compute both LCS and LSCT, and the inconsistency push model collapse. When we use
C with l1 distance to compute LSCT, we can obtain an sub-optimal performance. The second group shows
the influence of using l1 distance, l2 distance and Dot distance to implement the LSCT based on the optimal
transport plan T∗. We can observe that the l1 gives the best performance.

Table 15: Comparison of different metrics of Eq. 7 on ImageNet-LT on ViT-B/16.

Metrics ImageNet-LT
Many Medium Few Overall

Logits + l1 0 0.01 0 0
C + l1 81.14 77.55 71.62 78.13

l1 distance 81.42 77.73 71.72 78.25
l2 distance 81.59 77.33 71.07 78.12

Dot distance 81.61 77.42 70.99 78.16

D.5 When to employ balanced sampling strategy?

As shown in Table 16, we provide the ablation study on where to employ the balanced sampling strategy. We
can observe that balanced sampling only in Phase B gives the best performance. In addition, in Figure 11,
we can see that even when balanced sampling strategy is used in Phase A, it cannot help tail classes obtain a
more discriminative visual feature distribution. The visual feature distribution obtained by balance sampling
does not have a significant difference from that obtained by random sampling on tail samples. However,
for head samples shown in Figure 12, we can see that the visual features of the head class after balance
sampling fine-tuning are clustered less tightly than those obtained by random sampling. This may also
explain why the performance of using balance sampling in both phases is not as good as using it only in
Phase B, especially for the results that the performance of Many-shot for using balanced sampling in both
phases is lower than only in Phase B (48.9% vs 49.8%). Therefore, using balance sampling in Phase B gives
the best performance.

Table 16: Which training phase to employ balanced sampling strategy ablations. On the Places-LT dataset, balanced
sampling only in Phase B makes our method perform best.

Dataset Balance Sampling Many Medium Few OverallPhase A Phase B

Places-LT

- - 55.1 44.0 38.2 44.9
✓ - 54.4 43.1 39.7 45.2
✓ ✓ 48.9 52.1 52.3 51.0
- ✓ 49.8 52.6 54.2 51.9
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Figure 11: Fine-tuned visual features from CLIP on
10 classes with least number of samples on Places-LT
on ViT-B/16.
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Figure 12: Fine-tuned visual features from CLIP on
10 classes with most number of samples on Places-
LT on ViT-B/16.

D.6 Implementation details about how to combine our framework with vision-modality-based
methods

All the experiments share the same Phase A for fine-tuning encoders. In combination with CB-CE loss and
TTA, we train the model from the stretch in Phase B. In combination with LWS and MisLAS, we use our
best checkpoint in Phase B as the initialization and then employ these methods for further tuning.

Combination with CB-CE loss. We simply replace our LCE with CB-CE loss in our LB to train the
models from scratch, where the hyper-parameter β in CB-CE is 0.99.

Combination with LWS. We first initialize the model with our best checkpoint, where the encoders and
the linear adapter are all frozen. Then we employ LWS to further tune the classifier with learnable parameters
to adjust the loss weights. We use LCE + LOT + LSCT to optimize the classifier and learnable parameters.

Combination with MisLAS. We use LabelSmoothLoss proposed in original MisLAS to replace LCE for
tuning the classifier. Other settings are the same as the combination with LWS.

Combination with TTA. We only aggregate the logits of the classifier from five perturbed copies of the
input image to evaluate the model and keep the same training strategy as our proposed method for model
learning.

E Visualization of Transport Plan

In this section, we give the visualization of the transport plan on the test dataset of ImageNet-LT based on
ViT-B/16. The transport plan captures the similarity between p and q. In our work, we utilize the transport
plan to push refined visual features close to the corresponding prototypes. Therefore, the visualization of the
transport plan can visually prove the rationality and effectiveness of our method, by using optimal transport
to measure the distance between refined visual features and prototypes.

As shown in Figure 13, the horizontal axis is the weights W of the classifier g, sorted by index. The vertical
axis is the test set, sorted by label. The perfect transport plan should be diagonal because we initialize
W using textual features corresponding to images with the same label. Namely, Wg,1 is initialized by the
textual features of 1−st class. Therefore, Wg,1 should be more similar to the visual features of 1−st class.
As can be seen, our method keeps the diagonal, showing that the transport plan can effectively capture
the similarity between refined visual features and prototypes. As a result, our proposed method based on
optimal transport is reasonable.

F Limitations

Similar to BALLAD and VL-LTR, Our proposed method requires fine-tuning the visual encoder in down-
stream datasets, which require some computational resources and may limit our method. In the future, we
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Figure 13: Visualization of the transport plan on ImageNet-LT on ViT-B/16.

will focus on how to leverage some parameter-efficient tuning methods into our framework to reduce the
requirement of cost.
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